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Abstract

Measurements of the wave speed c in MI imply a fast time A = p/pc2 of
relaxation. This and the delayed die-swell measurements suggest that MI is
not very elastic. Extensive and very reliable values of the climbing constants
show that MI has weak normal stresses at the level of STP. The climbing
constants plus back-extrapolated values of /jVI'2 taken from measurements
at two temperatures by Binding, and Walters and Prud'homme lead to
values of the two coefficients in the second-order regime of slow flow of MI.
This gives us all the constants in the Roscoe formula for the quadratic
correction of Trouton's viscosity and also allows us to compute the normal
stress ratio - N2/N = 0.11, independent of temperature.

Keywords: climbing constant; delayed die swcll; extensional viscosity; wave spced; test fluid MI

1. Introduction

The rheometrical data presented in this report are unique in that it is the
only report on the properties of the MI fluid to present measured values of
the climbing constant, of the two constants of the second-order approxima-
tion of a viscoelastic fluid, of the intensity factor for extensional viscosity,
and secondary motions at second order. We computed N2/N1V = -0.11 at
low shears from our measured climbing constant at 20 °C and back extrapo-
lation of N1/2j 2 given by K. Walters. We computed N2/N = -0.12 at low
shears from our measured climbing constant at 27.20 C and back extrapola-
tion of N 1/2"' 2 as given by R.K. Prud'homme. We are also the only
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laboratory to give values of the wave speed, the rigidity and the effective
time of relaxation. Our time of relaxation is shorter than that computed in
the traditional way using standard rheometers. The reason for this is that the
response time of the wave speed meter is much shorter (say 10-4-10 - 3 s)
than the response time of cone-and-plate rheometers (10- 1 s). The speeds
which we measure and the associated relaxation times seems to correlate
wiih various critical phenomena which occur in the flow of polymeric
liquids, the most notable being delayed die swell. We present some data for
delayed die swell in the MI solution. The MI solution has a fast time of
relaxation as is characteristic of fluids with a rather more Newtonian than
elastic response.

2. Theory

The operational theory for the measurement of the climbing constant is
given in the 1984 paper of Joseph et al. [1]. The height function for the climb
is given by

H(r, a)= ho(r) + h2 (r)a 2 , (2.1)

where . is the angular frequency and terms of O(a4 ) have been neglected.
Here ho(r) is the static climb, independent of .0, and h,(r) is to be
determined by the following problem:

T a 4 #, pa 4

T(rh'2 )'- pgh 2 =-27 2
r4 2r' (2.2)

h'(a) = 0, h2(r ) --,0 as r -+ oo

where T is the surface tension,

13= 3a1 + 2a 2  (2.3)

is the climbing constant, al and a2 are constants of the quadratic approxi-
mation to S in the stress T= pl + S, S = S1 + S 2 ... ,

S l = p[A [Ul is the linear or Newtonian approximation,

S2 = aA 2 IU] + a2 AI[]. (2.4)

The expression S(2) = 1 + S, is called the extra stress of a fluid of grade
two. This is just a way of speaking; there is no fluid of grade two, but such
an expression arises on every simple fluid when the flow is slow and slowly
varying; for a recent full discussion see Joseph [2]. The constants al and a 2

are related to the zero shear values of the first and second normal stress
differences N and N2 by the following:

TI1 - T 22 =N 1 = - 2q2'a ' (2.5)
T 2 2-T 33 =N 2 =(2al + a 2 )y,
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where j? is the shear rate and

T, -(2.6)

If we define
n, lim X-"

(2.7)
n, = lim A/ 2

-?-0 P

then

a, = -n/2,

2 I (2.8)

IIP 3al+ 2a, 2 L+72n2

The fluid will not climb a rod if nz/iz < -1/4. The theory of rod
climbing with surface tension neglected was done by Kaye [3), Joseph and
Fosdick [4], Hoffman and Gottenberg [5], and B6hme [6]. Joseph et al. [7]
were the first to use theory in experiments designed to measure f3. They
showed that, to get the predicted shapes of the free surface to agree with
measured ones, it is necessary to retain the effects of surface tension, as in
(2.2). A very accurate approximate solution of (2.2) was derived by Joseph et
al. [7]. When evaluated at the rod this solution gives

a)4+X 2+) (2.9)

where ?2 = a2S and S = pg/T. Joseph et al. [7] and Beavers and Joseph [8]
proposed (2.2) and (2.9) as a basis for a rotating rod viscometer. A possible
defect of this kind of rheometer is that it requires values for the surface
tension. Fortunately, the values of T which have been measured in the
different liquids used in experiments and in M1 are nearly the same, about
30 x 10- 5 N cm - 1. An error analysis given by Joseph et al. [1] shows that
the value computed for fi from the graph of the measured height of climb at
the rod is not strongly affected by small changes in surface tension.

Roscoe [9] presented a formula for the extensional viscosity at low rates
of shearing

Til- T 22 = 3[SIL + (a, + a')S2] + O( IS 1), (2.10)

where ,9 is the rate of stretching. This is probably the only model-indepen-
dent formula for extensional viscosity which can be evaluated numerically
by relatively simple rheological measurements. Equation (2.10) was given, in
a slightly different form, by Zahorski [10].
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Using (2.8), we find that

a, + a,= ' . -  (2.11)

Fluids ,ith n2/n , < -1/2 stretch weaken. Equation (2.8)3 shows that such
a fluid will not climb a rod. We also note that

a 1 = 2n, - fi.

a, = 29 -. 3n, (2.12)

Equation (2.12)_ shows that the intensity factor for extensional flow. the

second-order correction of the Trouton viscosity, is equal to the climbing
constant when n, = 0. It is easily verified that a, + a 2 = when n,/n =

-1/10.
Joseph 121 has shown that the intensity factor a, + a, for the extensional

viscosity at second order also controls the creation of vortices at second
order in the following sense: suppose that the vorticity t = ctl + 2 t2 + O( 3),
where c is a parameter perturbing rest. Then we find that 9, and t2 satisfy
v2 

1 = (2.13)i ~V-[t = 0

and

P at2 + p curl(, A u,) =V 2 + (a + a,)curl div A. (2.14)

Equations (2.13) and (2.14) show that the effects of viscoelasticity on the
vorticity appear first at second order with an intensity factor a + a.

How should the constants ix1 and a 2 be measured? The climbing constant
(2.3) gives one combination of a, and a2 which can be measured with very
good precision. The hard-to-measure second normal stress is related to a,

and a 2 by

112 = 2al + U 2. (2.15)

It is claimed that n2 can be measured by measuring the surface deflection in
a tilted trough. A full discussion of this method is given by Tanner [11]. The
shear rates which can be achieved in a trough tilted through a small angle
are rather small so that the deflections which develop on the free surface
would not be easy to measure in many fluids. The comparison of Table 2
and Table 3 giving al + a 2 for the fluids Dl and MI suggests that the
surface deflections in M1 would be more than 50 times smaller than in D1.
In fact, rheological data using this method are rather sparse.

The second normal stress can be obtained in measurements on ordinary
cone-and-plate rheometers by a well-known method. The problem with this
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method is that the values of the first and second normal stresses at low
shearing cannot usually be obtained because the transducers will not work
unless the shear is above a certain threshold. However, it is very easy to
show [2] that, at low rates of shearing, the ratio of the normal stress
differences has a limiting value

1 - + (2.16)

with
nl, a,1+ (2.17)I11 2 a1

Hence, we may hope that (2.15) may be measured by backward extrapola-
tion of the values of -N 2/N measured on cone-and-plate rheometers. The
values of a, and a 2 may now be determined:

1

(2.18)

a 2  1 + 4Z2 /'Z 1  (2.19)
1 + 24n,/ni

a] + a2 = + 4n2/n i 1 8 (2.20)

Evidently N2/2j' 2 is too small to measure in MI so that back extrapolation
of N2/N without considerable scatter cannot be carried out. However, it
seems that the graphs of N1/2' 2 shown in Figs. 8 and 9 can be extrapolated
to give -a 1. Then a1 and f8 determine a2 and N2/N 1 uniquely.

3. Climbing constants

The climbing constants (Fig. 1) were measured using a rotating rod
viscometer. We have figures like those of Figs. 2-5 for every one of the 38

-,00

S

0

C.)
C" 0.10

0.01
0 10 20 30 40

Temperaturo T(0C)

Fig. 1. Summary of the dependence of climbing constant on temperature T (6.2-41.5o C).
The equation of the line is 4=39.7 exp(-0.158T) g cm-1. At T= 20'C, fi =1.68 g cm- .
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0
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2 (revis)f

Fig. 2. Height rise h (cm) at the rod vs. the angular velocity squared W2 ((rev s-1)2). o
(angular velocity increases), h = -0.011 +0.817 2 ; 0 (angular velocity decreases), h =1.8x
10- 3 +0.813w 2 . The average climbing constant is = 23.2 g cm- at T= 6.20 C.

0.24

- 0.2 -,--+-.- -  
-.

0.16 -

0.12 --.-. . .. .

oT
0.08

0.04~~

0
0 1 2 3 4 5

2 (tevis)2

Fig. 3. Height rise h (cm) at the rod vs. the angular velocity squared w2 ((rev s-1) 2 ). o
(angular velocity increases), h = 6.65 x 10- ' +0.0478w 2; 0 (angular velocity decreases), h
6.99 x 10-' +0.0479CO2. The average climbing constant is =1.43 g cm- at T= 19.45 C.

0.05 * - *

0.03 -- -

0
0 4 8 12 16 20 24

2 
(roviS) 2

Fig. 4. Height rise h (cm) at the rod vs. the angular velocity squared w 2 ((rev s-1)2). o
(angular velocity increases), h =9.00X10- 3 +0.00335 W 2; 0 (angular velocity decreases),
h=7.70X10-+0.00338W2 , The average climbing constant is #=0.168 g cm- 1 at T=
35.55 0 C.
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0.02 --

-0.024 - .

0.016

1012 jjf
0.008

0 20 40 60 80 100 120 140
2 (revis)

2

Fig. 5. Height rise 1 (cm) at the rod vs. the angular velocity squared W2 ((rev s-1) 2). o
(angular velocity increases), for the first four points h =1.19X10-3 +7.90X10-4W2; 0
(angular velocity decreases), for the first four points h=0.0133+6.53x1O-4 2. At this
temperature, the fluid sinks for higher values of angular velocity. The average climbing
constant is/3 = 0.093 g cm-1 at T= 41.5*C.

entries in Table 1. In Table 1 we also list the test date as a check to see
whether the MI is time dependent or not. As indicated in the table M1 is
not time dependent, at least for a period of time.

Surface tension of the fluid T= 29.9 X 10-5 N cm-1, density of the fluid
p = 0.895 g cm- 3 and the radius of the steel rod a = 0.474 cm. T and p are
almost constant for the temperature range of our measurements. The surface
tension was measured with a ring tensiometer.

The diameter of the fluid container, which is made of copper, is 10 cm.
The angular speed of the rod can be measured to within 0.002 rev s-1. The
measurements of the height of climb are repeatable to within 0.002 cm. The
rod and fluid are enclosed in a Plexiglas chamber which is connected to a
temperature controller. The temperature is measured at the surface of the
fluid and the probe is kept at the same position for all the measurements.
There are temperature differences between the fluid and air in the chamber;
for more accurate measurement we need a better way to control the
temperature.

At larger rotational speeds the steady climbing bubble loses stability to a
time-dependent motion which has been called the "breathing instability".
This motion first appears at a critical co = co,, then grows quickly to
time-periodic motion with a long period in which a band on fluid rises
slowly to a certain height, then collapses down into the body of fluid. The
time-periodic breathing motion in MI is shown in Figs. 6(c)-6(f) and in
photographs displayed in Figs. 95.2 and 95.3 by Joseph [12]. A general
description of the breathing instability is in the reference just mentioned, in
Beavers and Joseph [8], and in Joseph and Beavers [13].

The first quantitative data for the breathing instability are presented in
Fig. 7 where the critical speed is plotted against the temperature and fit to
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TABLE 1

Measured values of climbing constants. All data was taken in February 1989. MI is not time
dependent at least for a period of time

Temperature Climbing constant Date

( 0 C) 9(g cm - ')

6.2 23.2 14
6.3 21.8 14
9.15 11.3 15
9.15 11.5 15

12.25 5.80 15
12.3 5.76 15
16.3 2.80 16
16.3 2.87 16
18.9 1.67 16
18.95 1.59 16
22.1 0.931 16
22.2 0.934 16
25.4 0.568 17
25.3 0.585 17
29.05 0.366 18
28.95 0.379 18
32.9 0.219 18
32.95 0.217 18
37.25 0.130 19
37.35 0.128 19
41.5 0.083 20
41.5 0.093 20
35.5 0.173 20
35.55 0.168 20
31.15 0.304 21
31.15 0.317 21
26.9 0.576 21
26.95 0.564 21
23.15 0.876 21
23.1 0.873 21
19.45 1.43 22
19.45 1.43 22
18 1.97 22
17.95 1.88 22
13.9 4.61 23
13.8 4.53 23
11.45 8.49 23
11.35 8.75 23

the curve co = exp(O.074T). Recalling now that = 39.7 exp(-0.158T) we
may conclude that the critical speed w, is proportional to 1/\,i, approxi-
mately.
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4. Limiting values of the normal stresses

Thrust measurements on the plate of a cone-and-plate rheometer give the
normal stress difference N(j') as a function of the shu.; -rate j. The same
thrust measurements in a parallel plate rheometer give values of N2 - NJ
where N2(j') is the second normal stress difference. Neither measurement
can be easily carried to low rates of shear because of the insensitivity of the

1M

4-

Fig. 6(a-D). Photographs of rod climbing in MI at 21.5 C. (a) At rest, there is a small static

clim" due to capillarity; (b) stable steady climb w = 3 rev s- 1 ; (c) and (d), slightly post

critical time-periodic motion at co = 4.94 rev s-1; (e) and (0, large amplitude time-periodic

motion at o = 6.55 rev s-.
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transducer. From these two measurements, we can compute N2/N as a
function of j, and try to extrapolate it to zero shear. This first procedure
works well for the test fluid D1 used in the second normal stress difference
project [14]. From Fig. 5 of Ref. 14 we easily estimate by extrapolation to
zero shear

N2 < 0.10 at 250 C. (4.1)0.07 <- 21

The climbing constant for D1 at 250 C was measured by us as

/.=62.2g cm -1 . (4.2)



I297

In Table 2 we have given the values of the quadratic constants a, and a2
computed from (4.1) and (4.2) using (2.8) and (2.17) and the values of the
limiting normal stress it, and n2 using a1 and a2 in (2.5) and (2.7).

The normal stresses in MI are more than 50 times smaller than in D1.
However, it appears to be possible to back extrapolate N1/2"' 2 to its
limiting value - a1 . This, together with the climbing constant fi = 3 a, + 2a2,
gives al and a2 separately. Figure 8 gives measured values of N1/2"' 2 for
M1 at 20'C which were measured in Professor Walters' laboratory on a
Weissenberg rheogoniometer. Figure 9 gives measured values of N1/2 ' 2 for
MI at 27.20C which were measured on a System IV Rheometrics rheometer
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Ii

10 15 20 25 30 35 0

Tent rcjI

Fig. 7 Dependence of the critical speed of instability on tempcature (*C). The equation
of the line is c. exp(0.0"74T) rev s 1 .

TABLE 2

Material parameters for DI at 25C" using (4.1) and (42)

- nan = 0.10 - = 0.01

H(gcm-,) 62.2 62.2
a, (g cm ) -103 -86
a,(gcm- ) 187 161
a l a 2  

4 "7 5

n, (gcm- ') 206 172
n, (gcm- ) -17 -11

with a sensitive transducer in the laboratory of R.K. Prud'homme. From .he
extrapolated values a, = -3.0 g cm -t at 20'C and a = -1.0 g cm - ' at
27.2*C and the values /3=1.68 g cm - at 20°C and 1=0.54 gcm- taken
from Fig. 1, we compute the entries in Table 3.

04-

(Pa s
2)

X X

x
02

0A

0 2o 4 0 610 a .0 100
"Y 

1s)

Fig. 8. Measured values of N 1/2"2 for MI at 20*C. The backward extrapolation gives that
N, /212 j - a] is about 0.3 Pa S2 or 3 g cm i. (After Binding ct al. [15.)
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Fi2.9. I=,mcr4A%-lucs of NV/2' for MI at 2".2* C. The meuured values of the stress for l

are below the allowed transducer limits and are discarded. We took the limiting value to be
- a1 = 0.1 Pa s2 or I g Cm t (After Prudlhomme 1161)

Table 3 shows that ",/N, is very insensitive to changes in the tempera-
ture even over a range of temperature in which the values -N\ and N, depend
strongly on the temperature. The value of NJ/AN is also not very sensitive to
errors in the measurement of n, = -2a. At the Combloux meeting mea-
surements at 200 C were reported in the raige

177 cm -It < -a _< 3.50 gcm- t

Using 13 =1.68 ve compute

0.097 _ -NJVN < 0.129.

This range of values is consistent with N2/N1 data pres-iteu by Binding et
al. [15].

TABLE 3

Material parameters for M1 at 20°C and 27.2 0 C using (4.1) and (4.2)

20 0 C 27.2 0 C

n1/2= al (gCm- )  -3.0 -1.0
fi(gcm ') 1.68 0.54
a2 (gcm-) 5.34 1.77
al + a2  2.34 0.77
N2 /N -0.11 -0.12



300

5. Second-order correction of the Trouton viscosity

We turn next to an evaluation of the coefficients in the formula (2.10)
which give the extensional viscosity

(af . a J (5.1)

at low rates of stretching- Values for the coeffici-nt a, + a, of the second-
order correction of the Trouton viscosity are viven in Tables 2 and 3. To
complete the description of (5.1) we give values for the viscosity .in Table
4. The elongational stress (2.10) for DI at 25'C when nlJni = -0.10 is

T 1 - 7,- 3(95S + 83.0 ). (5.2)

Evaluation of the same stress for MI at 200 C gives

- - 3t29.5§ + 2.342). (5.3)

At T = 27.20 C we have

T,- T-,. - 3(11S + 0.77§2). (5.4)

Comparing now (5.2) and (5.3) we can conclude that the increase of

00

0 00000 o

100
01 10

Fig. 10. Comparison of °qn. (5.3) with measurements at 20*C of Mikkelscn et a]. [7] using

opposing jets.

TABLE 4

Values of the viscosity j o

Fluid J

DI at 25 0 C 9.5 Pa s
Ml at 20 0 C 2.95 Pa s
MI at 27.20 C 1.1 Pa s
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extensional viscosity at second order is more than 50 times greater in DI
than in MI.

In Fig. 10 we have compared measurements of Mikkelsen et al. [171, using
Fuller's method of opposing jets, with our expression (5.3). It is known that
the opposing jet gives a stretch value for the extensional viscosity which is
about 1.4 times the Trouton viscosity. After taking into account the expected
shift of 1.4 (see Schunk et al. [181), we may conclude that the range of stretch
rates for which second-order effects are negligible is the same for the exact
formula (5.3). The nonlinear effects in the experiments undoubtedly extend
beyond second order so that perhaps there is satisfactory agreement.

6. Wave speeds, effective rigidity and effective relaxation times

The shear-wave speed for M1 was measured with the wave-speed meter in
our laboratory. The meter allows us to determine transit times for an
impulsively generated shear wave in a fluid at rest. The wave traverses the
gap between two concentric cylinders. Transit time measurements must be
made for different gap sizes. We can vary the gap dimensions in our
apparatus between 0.25 and 12.8 mm. A shear-wave speed is defined if we
measure one and the same transit speed over a range of small gaps.

The theory for the wave-speed meter is given in Joseph et al. [19]. The
apparatus and the measuring technique are described in Joseph et al. [20]
and in detail in Riccius [21].

For the MI fluid we measured transit times with three different gap sizes
of 6.12, 9.38 and 12.2 mm. The transit speeds c presented in Table 5 are
determined from averages over eight time measurements for each gap. The
shear-wave speed E is then defined as the average over the three transit
speeds. Examples of the raw data for each gap size are shown in Fig. 11. The
raw data are voltage vs. time diagrams which are recorded on an oscillo-
scope. There are two signals for each gap size; each one is adjusted to 1.75 V
before the measurement is started. The rapid drop of the first signal
corresponds to the motion of the outer cylinder which is caused by the
impacting kicking device. The second signal represents the motion of the

TABLE 5

Wave speed F, effective rigidity G, and effective relaxation time X, for M1

Gap c T F Gc A, #
(10- 3 m) (cm s-1) (°C) (cm s- 1) (Pa) (i0- 3 s) (Pa s) (kg m- 3)

6.12 378.1 + 12.1 23 404.7 14067 0.21 3.0 859
9.38 403.4+33.6 23

12.2 430.5±10.5 23
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transit times
2.0 

-FE

V 1.5

1.0N

.5- \

- 005 0 005 .010

thm (3 C )

Fig. 11. Evaluation of transit times from raw data in three different gap sizes. The drop in the
voltage vs. time diagrams shows the motion of outer and inner cylinder for the 12.2 mm gap
(top) (c = 431 + 11 cm s-1), for the 9.38 mm gap (middle) (c = 403 ± 34 cm s - ) and for the
6.12 mm gap (bottom) (c = 378± 12 cm s-1). The lengths of the arrows represent the lapse
time between the onset of motion of both cylinders in each gap size.

inner cylinder which results from the arriving shear wave. How the transit
time is evaluated from graphs of this kind is indicated through the arrows
above each pair of signals. The lengths of the arrows represent the elapsect
time between the instances of onset of motion of the outer and innci
cylinder. Figure 11 shows the development of the transit time over three gap
sizes. From here and from Table 5 tl.e reader can verify how well the data
satisfy the criterion for the definition of a shear-wave speed given above.

The value " was subsequently used to evaluate the delayed die-swell
experiments which are discussed in Section 7. We call the flow "sub-" or
"supercritical" whenever the local velocity is smaller or larger than the wave
speed " that was measured on the wave-speed meter.

In order to make a comparison with other fluids tested in our meter we
use quantities that can be calculated from the shear-wave speed '. These are
the effective rigidity, Gc = p 2 , where p is the density, and the effective
relaxation time, X, = ii/G,, where A2 is the zero-shear viscosity that was
determined from measurements on a Rheometrics System Four rheometer.
We believe that , Gc and X, are relevant for the dynamic properties of flow
and for steady flows which change type. G, represents slowly decaying
elastic modes that characterize wave propagation on the time scale of the
in.strument (O(10--10 - 4 s)). Xc is an important estimate for the decay
time of these modes.

A comparison with other liquids that have been tested on the wave-speed
meter is especially useful (see Riccius [21] for a complete list of wave-speed
data obtained until February 1989). The signals were not noisy, facilitating
unambiguous evaluation of transit times. We can say that M1 supports wave
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propagation over a large distance at high wave speeds relative to most other
fluids. In comparison with fluids of similar zero-shear viscosity the large
wave speed gives rise to a large effective rigidity G and to a rather short
effective relaxation time XC. The relaxation time is the most significant
quantity for this comparison. It effectively reveals whether the liquid has a
relatively elastic or Newtonian response. X, plays a role in the interpretation
of the results on delayed die swell (see Section 7).

7. Delayed die svell

Joseph ci A. [22] showed that there is a critical speed of extrusion beyond
which the swell is delayed; instead of swelling at the exit lip, as it does in the
pre-critical case, the extrudate does not swell at the exit but the swell begins
somewhat farthcr downstream. Many photographs are shown in their paper.

A sketch of delayed die swell in fluids with a relatively long time of
relaxation, say X. > 10-2 s, is shown in Fig. 12.

Joseph et al. [22] found that the shape of the jet appears to correlate with
the time of relaxation based on our wave speed which was discussed in
Section 6. The fluids with long times of relaxation are more elastic, and the
delay is very pronounced, like a hydraulic jump, as in Fig. 12. Fluids with
short times of relaxation are more Newtonian with larger effective viscosi-
ties. smoothing shocks. We think of Jeffreys' model with large Newtonian
viscosities, large retardation times. For these fluids it is much harder to
detect the delay. The delay appears as a change of curvature, a point of
inflection in the jet shape which is introduced at criticality.

In Fig. 13 we exhibit a sequence of photographs which shows how the
shape of the jet of M1 changes as the speed of extrusion is increased past
criticality. The extrusion velocity -U is the volume flow rate divided by the
area of the pipe. Ahrens et al. [23] have shown that vorticity of the Poiseuille

(, )

(b)

Fig. 12. Sketch of deayed die swell in a solution with a not-too-short time of relaxation: (a)
subcritical, (b) supercritical. The speed is greater than the wave speed before the swell, less
than the wave speed after the swell.
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flow of an upper-convected Maxwell model changes type when the maxi-
mum speed u.. at the center of the pipe exceeds the wave speed c. Since
Um = 2U for the Maxwell fluid, theory shows that a hyperbolic region
appears in the center of the pipe when

M= U.c= 2-i/c > 1. (7.1)

The procedures used to obtain the values of -U and c are exactly the same as
those described by Joseph et al. [22]. Photograph 13(a) shows a subcritical

I:I
.'(b) "

Fig. 13. Delayed die swell of M1. The inside diameter of the pipe is 3.175 mm. (a) I = 312.88
cm s-1, M = 2"i/c = 1.55, subcritical. (b) ii = 357.58 cm s- , M = 1.77, critical. (c) T = 417.17
cm s - , M= 2.06, supercritical. (d) i = 500.60 cm s- 1, M 2.47, supercritical.
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swell; the curvature of the jet is one signed. Photograph 13(b) shows the
condition of the jet slightly after criticality. A point of inflection in th e
curvature appears at the exit lip. We can see this en the videotapes of our
experiments, which are available on request, as a sort of sudden stiffening of
the jet. Photographs 13(c) and 13(d) show the jet under supercritical condi-
tions. We did measurements and found delays in pipes with different

diameters.
The critical conditions for delay in the different pipes are the set of points

belonging to M1 shown in Fig. 14.
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Fig. 14. Mach number vs. pipe diameter: o, 1.3% CMC; 0, 9.8% Elvacite; o, 6% PIB/D; e,
2.5% Polyox; +, 12.1% K-125; A, MI.

We found that the shapes of jets of M1 were essentially identical with
shapes in other fluids with short times X = I/G, of relaxation. The effective
time of relaxation for M1 is 0.00021 s. We refer the reader to Figs. 8.1 and
8.2 of the paper by Joseph et al. [22]. The effective time of relaxation for
PIBM, 1%, and PMMA, 1%, are listed in Table 1 of Ref. 22 as 0.0020 s and
0.0059 s respectively, one order greater than the 2.6 X 10 - 4 s for MI. The
jets shown in Joseph et al. [22] were extruded downward, in the direction of
gravity, while those shown in Fig. 13 are extruded perpendicular to gravity.
The effect of gravity in the vertical jet is to accelerate the jet, to stretch it
and to conceal features which might be better seen in a horizontal jet. A
PIBM, 1%, jet extruded horizontally would probably look much like ML.

MI seems to be close to a Newtonian fluid with small non-Newtonian
effects which are often associated with highly viscous liquids.
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